当前位置: 冷冻设备 >> 冷冻设备前景 >> 机器视觉检测的未来趋势是什么,将面临哪些
影响视觉检测行业的最新技术趋势包括嵌入式视觉,深度学习和不可见光成像的有效性。
随着技术的进步和智能工厂的发展,视觉检测设备在过去十年中发生了巨大变化。预计到年,全球视觉检测设备市场将增长近一倍,达到.2亿美元,因为行业对质量检测的要求增加了。亚太地区将继续成为全球最大的市场,到年将占收入的38.4%。在技术,灵活性,效率和准确性方面表现出高度创新的外观检测供应商将在不断发展的市场中取得最大的成功。
尽管全球经济的不确定性将影响外观检测行业,但行业协会和专家普遍认为这不会造成严重损害。借助深度学习软件,嵌入式视觉等硬件平台有望蓬勃发展,工厂级别的传统应用程序也将保持强劲增长。那么,下面我们来看下影响视觉检测行业的三大趋势。
一、嵌入式视觉将继续增长
得益于越来越多的行业应用程序的支持,嵌入式视觉将继续快速增长,例如自动驾驶,生命科学,消费电子,边境监控和农业等。
处理能力大大增强,内存变得非常便宜。用户可以选择一个非常小的相机,并使用来自不同来源的云数据。将这些因素与机器学习结合在一起时,如果使用单独的软件包,则具有内在的愿景。
客户希望系统集成商为其开发整个嵌入式视觉系统。嵌入式视觉使智能相机达到了其最初的意图,即在非常小的外壳内,尽可能靠近图像传感器以进行图像处理视频分析。为了响应嵌入式视觉市场,我们开发了为了在低成本,低功耗平台(从摄像机设计到FPGA编程)中快速提供特定于应用程序的解决方案,该平台可以集成人工智能和深度学习功能。
为客户设计一个有吸引力的系统是嵌入式视觉的最大挑战。通过低成本,低功耗的设备,可以将外观检测中客户的所有功能都置于很小的尺寸中,这是一项艰巨的任务。向消费者介绍完全不同的硬件解决方案并非易事,但最终希望是,客户将以某种方式生产更多对用户更友好,更小且最终成本更低的产品。
在许多使用案例中,传统的视觉检测无法与嵌入式视觉竞争。
二、深度学习的更多应用
用于视觉检测的深度学习一直处于颠覆性技术的最前沿。如果您涉足视觉检测行业,您可能已经看到了该软件如何与深度学习算法相集成以及如何快速产生结果。这些系统可以运行数千个排列,并且在识别和历史记录以及其他应用程序的视觉检查中具有%的准确性。
深度学习将对传统的图像分析方法产生深远的影响。这不仅将改变我们生产的产品,还将改变我们与客户互动的方式。深度学习将在解决传统视觉检测无法解决的应用程序中发挥重要作用。例如,在冷冻干燥的小瓶中检测疫苗时,每次的结果差异很大,主要取决于它们的干燥方式。采用传统的检测过程非常具有挑战性,因为在某些情况下,可能是粒子看起来与裂缝非常相似,而深度学习有助于区分这种细微的差异。
三、提高不可见光成像的效率
尽管深度学习可能是从图像中收集信息的最新方法,但这并不是唯一的选择。短波红外相机和照明的进步提高了不可见成像的效率。在这些更高波长的环境中,您可以实现更多应用,例如发现飞机机翼复合材料内部的缺陷。我们现在将高功率SWIRLED引入高速视觉检查应用市场。
对高光谱成像的需求不断增长。当您在大范围内观察数百个光谱条以检测物体之间的细微差异时,您需要一个宽带光源。这将使我们减少使用LED的数量,并创建模拟卤素灯光源的宽带。
外观检测面临的挑战
智能传感器,智能相机和可配置视觉系统已大大消除了开发视觉检测系统的需求。当今最常见的应用是通过即用型即插即用技术完成的。在过去的十年中,智能相机变得越来越强大,照明公司提供的产品范围也不断扩大。但是,随着软件功能的增强和价格的不断下降,软件包的互联和标准化仍然存在问题。
不同的公司对同一事物使用不同的术语。甚至像以太网这样的标准化通信在公司之间也存在巨大差异,并且在视觉行业也没有真正推动开放软件标准的推动。
当今的视觉产品可以满足大多数应用的需求。随着技术和客户需求的发展,系统集成商必须保持清醒。例如,在3D影像市场中,硬件创新先于软件创新。
尽管有很多3D传感器和摄像机可供使用,例如激光三角测量,带有伪随机码型发生器的立体声传感器等,但是为了实现快速的系统开发,开发工具链有很大差距。
例如,许多OEM当前使用开放式标准3D传感器,从头开始编写程序应用程序,或使用“封闭式”系统进行工具配置,这通常很昂贵。高速机载图像处理可能需要具有现场可编程门阵列(FPGA)的3D传感器,从而使非FPGA程序员可以在软件包中部署3D图像处理算法。
另一个挑战是从人工智能和深度学习中获取信息的能力。最大的挑战是区分炒作与实质。现实情况是“许多人工智能和深度学习算法有时太麻烦了。
尽管视觉检测应用程序受益于深度学习算法,但是这些算法不能解决所有问题。与传统编程相比,当人们想达到99%以上的准确性所需的努力时,这一点尤其明显。尽管如此,这项技术确实占有一席之地,并将在未来几年继续发挥重要作用